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Box and Muller [1], have pointed out that a pair of independent 

standard normal random vpriables may be generated in the form 

x = (- 2 In u1) cos 2TIU , y = (- 2 In u ) sin 2TCU_, where "n «"p 

are independent [0,13 random variables. The proof readily follows 

from the fact that  (- 2 In u..) is distributed as p, and 2nu  is 

distributed as 0, in the polar representatron (p,ö) of (x,y). 

The method is attractive, but rather slow, requiring sine, cosine, 

logarithm, and square root subroutines.  This note shows how to speed 

up the procedure and still retain its principal advantage — ease of 

programming. 

One line of improvement, by way of a suggestion of von Neumann [2], 

is to generate sin 0 and cos 0 in the form u(u + v )  ,v(u + v )  , 

2   2 
where  (u,v)  are uniformly distributed over the unit circle!  u + v < 1. 

This avoids the sine and cosine subroutines. The pair (u,v)  can be 

produced, with efficiency n/^, by conditioning a.pair of independent 

uniform [- 1,1]  random variables.  It seems then that we may avoid 

the sine and cosine subroutines at the acpense of drawing an additional 

uniform random variable. We may, however, avoid this difficulty by 

using the following fact:  if u,v are uniformly distributed over the 

2   2 2   2 
unit circle:  u + v < 1, then u + v  is uniform [0,1]  and is 

independent of u/v. The proof is elementary and omitted.  It 



2p 2   2 *-if 2    2 -^ 
follows that u + v  is independent of u(u + v )   and v(u  + v )^f 

and hence that 

(1) 
x = uC- 2 ln(u2+v2)/(u2+v2)]*) 

y = v[- 2 ln(u +v )/(u +v )] 

2   2 i 
are independent standard normal random variables, since  C- 2 ln(u + v )] 

2   2"'i   2   2 —4' 
is distributed as p, and u(u + v ) ,v(u + v )   are distributed 

2   2 
as sin 0, cos 0, and are independent of u + v . 

We then suggest this procedure for generating a pair x,y of 

independent standard normal random variables:  generate pairs (u,v) 

of independent uniform [- 1,1] random variables until one satisfies 

2   2 
u + v < 1, then form x and y according; to relations (1). This 

method is faster than the direct polar coordinate representation and 

is still very easy to program.  It still takes about 5-6 times as 

long as the very fastest methods, but may well serve in situations 

where ease of programming or limited storage capacity are the primary 

considerations. 

If we try. to generalize the above methods - generate a point 

uniformly over the surface of the unit n-sphere and project the 

point into space by multiplying by a chi-n variate, we run into the 
T 

problem of producing a point on the n-sphere. The obvious method, 

generate a point in an n-cube and reject it if it lies outside the 

inscribed n-sphere, has efficiency IT
11

' /Z^ri^-),    which tends rapidly 

to zero. If we do not specify which n-sphere we want, however, we cah 

get a satisfactory procedure in the following way: generate independent 

uniform [-1,1] random variables vi»v2'• • * »vn»
v
n+i u11^1 

(2)      S* = v* +..-+ v* < 1< v* +.••+ v* + v2+1. 



Then the point  (v,/S .vVS ,...,v/s )  is uniformly distributed over 

the surface of the unit n-sphere, since the density function of 

?      pi 
(v-.,...^ ), given condition (2), is a multiple of 1 - [l - (z.. +•••+ z )] , 

and is radially symmetric. 

We then offer this method for generating a random number of 

independent, standard normal random variables x^jx , ...jx t Generate 

independent uniform [- 1,1] random variables v..,... ,v >v    until 

Sn = vl +",+ vn ^ 1 < vl +"*+ vn + Vn+1' ^^ Eül x^^ = v1t^]*, 

where R has the chi-square-n distribution and is Independent 

of the v's.  If n = 2m, ve may put R = - 2 InCu^u««»^ ) 

2 
and if n = 2m + 1, R = - 2 ln(u,u?««'U ) + y , where y is normal. 

2 
We may produce y  either as the square of one of the normal 

variates previously generated, or else in pairs in the form 

w1 ln(w^ + w2)/(w1 + w2) , w2 ln(w1 + w2)/(w1 + w2) , where 

2   2 
w, ,w? are uniform   [0,1], conditioned by w-i + w2 < 1. 

The expected number of x's produced by this method is 

about 3.5. 
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